

Multiple Output MEMS PCIe Gen1/2/3/4 Clock Generators

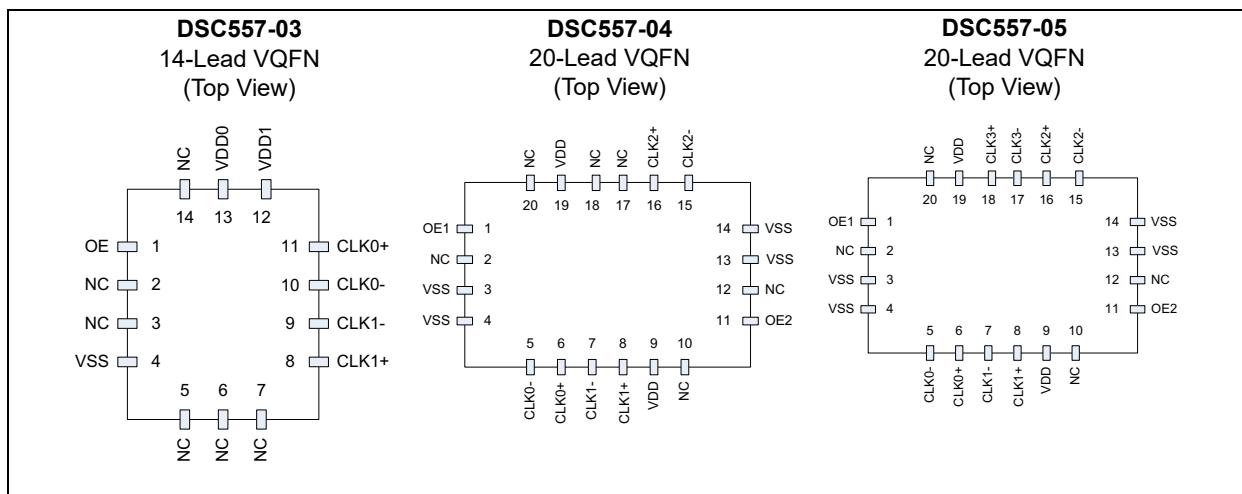
Features

- Complies with PCIe Gen1/2/3/4 Common Clock Spec
- Integrated MEMS Resonator Eliminates the Need for External 25 MHz Crystal
- Wide Temperature Range:
 - Ext. Industrial: -40°C to +105°C
 - Industrial: -40°C to +85°C
 - Commercial: -20°C to +70°C
- 100 MHz HCSL/LVDS/LVCMOS Options Available
- Dedicated Output Enable (OE) Pins for Clock Outputs
- Small Footprints:
 - 14-Lead VQFN (DSC557-03, Two Outputs)
 - 20-Lead VQFN (DSC557-04, Three Outputs; DSC557-05, Four Outputs)
- Excellent Shock and Vibration Immunity
 - Qualified to MIL-STD-883
- High Reliability
 - 20x Better MTF than Quartz Oscillators
- Low Current Consumption: 30% Lower than Competing Devices
- Supply Range of 2.25V to 3.63V
- Lead-Free and RoHS Compliant

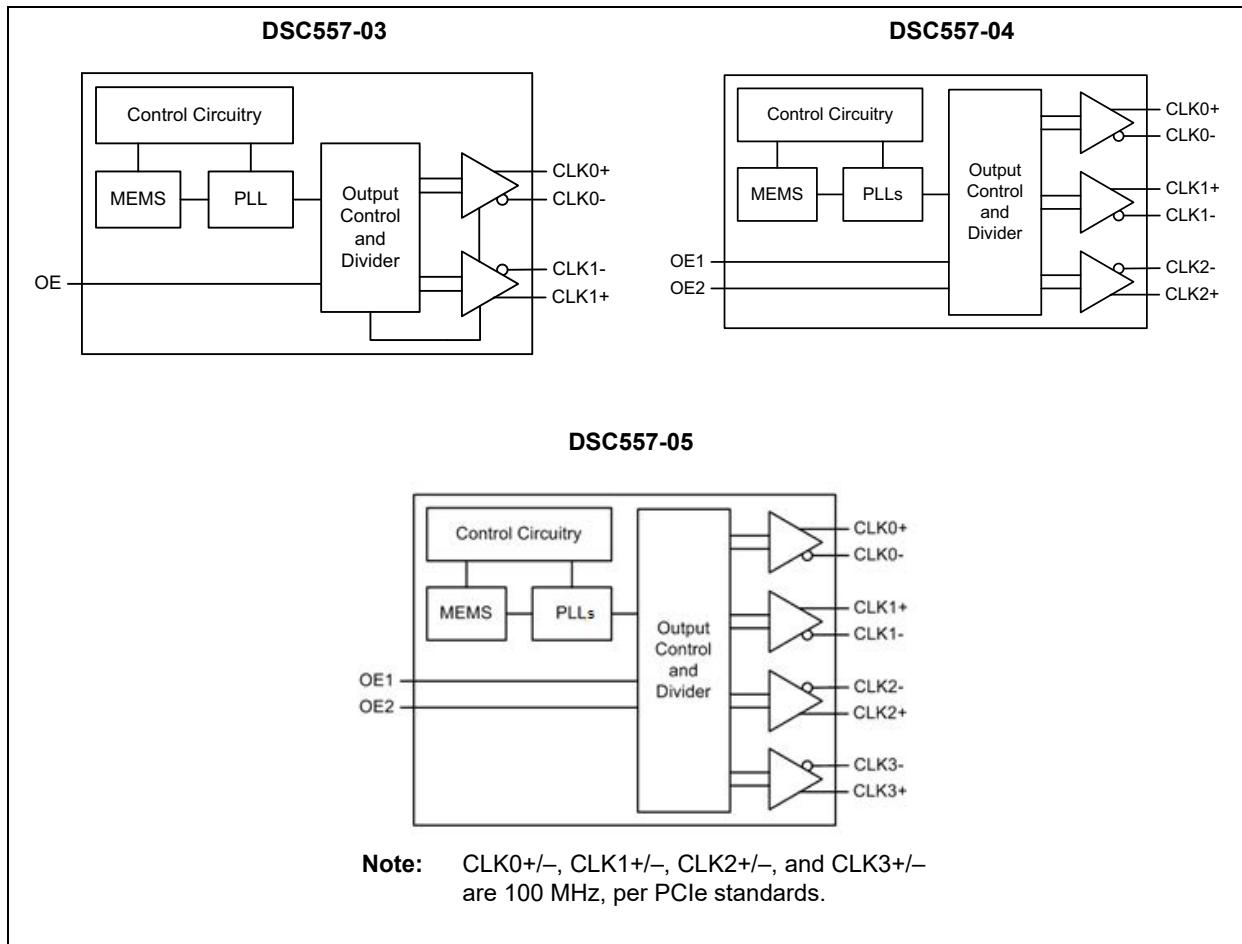
Applications

- Communications/Networking
 - Ethernet
 - 1G, 10GBASE-T/KR/LR/SR, and FCoE
 - Routers and Switches
 - Gateways, VoIP, Wireless APs
 - Passive Optical Networks
- Storage
 - SAN, NAS, SSD, JBOD
- Embedded Applications
 - Industrial, Medical, and Avionics
 - Security Systems and Office Automation
 - Digital Signage, POS, and Others
- Consumer Electronics
 - Smart TV, Blu-Ray, STB

General Description


The DSC557 series of high performance PCI Express clock generators use a proven silicon MEMS technology to provide 100 MHz differential output clocks with excellent jitter and stability over a wide range of supply voltages and temperatures. By eliminating the need for quartz or SAW technology, MEMS oscillators significantly enhance reliability and accelerate product development, while meeting stringent clock performance criteria for a variety of communications, storage, and networking applications.

The DSC557-03/04/05 have two, three, and four 100 MHz outputs, respectively. All have output enable/disable features.


The DSC557-03 is available in a space-saving 14-lead VQFN package. The DSC557-04 and DSC557-05 are available in a 20-lead VQFN.

Additional LVDS and LVCMOS output formats are available in addition to the default HCSL output format.

Package Types

Block Diagrams

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage	–0.3V to V_{DD} + 0.3V
Supply Voltage	–0.3V to +4.0V
ESD Protection on All Pins (HBM)	4 kV
ESD Protection on All Pins (CDM)	1.5 kV

† **Notice:** Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise specified, $T = +25^{\circ}\text{C}$, $V_{DD} = 3.3\text{V}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Supply Voltage	V_{DD}	2.25	—	3.63	V	Note 1
Supply Current, DSC557-03	I_{DD}	—	21	23	mA	HCSL output, EN pin low, output disabled
		—	60	—		HCSL output, EN pin high, output enabled
Supply Current, DSC557-04	I_{DD}	—	42	46	mA	HCSL output, EN pin low, output disabled
		—	100	—		HCSL output, EN pin high, output enabled
Supply Current, DSC557-05	I_{DD}	—	42	46	mA	HCSL output, EN pin low, output disabled
		—	120	—		HCSL output, EN pin high, output enabled
Frequency Stability (including frequency variations due to initial tolerance, temp., and power supply voltage)	Δf	—	—	± 100	ppm	All temperature ranges
		—	—	± 50		
Aging - 1st Year	Δf	—	—	± 5	ppm	± 1 ppm each subsequent year
Startup Time (Note 2)	t_{SU}	—	—	5	ms	$T = +25^{\circ}\text{C}$
Input Logic Levels						
Input Logic High	V_{IH}	$0.75 \times V_{DD}$	—	—	V	—
Input Logic Low	V_{IL}	—	—	$0.25 \times V_{DD}$	V	—
Output Disable Time (Note 3)	t_{DS}	—	—	5	ns	—
Output Enable Time	t_{EN}	—	—	20	ns	—
Enable Pull-Up Resistor (Note 4)	—	—	40	—	k Ω	Internally pulled up
HCSL Outputs (Note 5)						
Output Logic High	V_{OH}	0.725	—	—	V	$R_L = 50\Omega$
Output Logic Low	V_{OL}	—	—	0.1	V	$R_L = 50\Omega$
Peak-to-Peak Output Swing	—	—	750	—	mV	Single-Ended
Output Frequency	f_{OUT}	—	100	—	MHz	—

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise specified, $T = +25^\circ\text{C}$, $V_{DD} = 3.3\text{V}$.						
Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Output Transition Time (Note 6)	t_r/t_f	200	—	400	ps	20% to 80%, $R_L = 50\Omega$, $C_L = 2\text{ pF}$
Output Duty Cycle	SYM	48	—	52	%	Differential
Period Jitter (Note 7)	J_{PER}	—	2.5	—	ps _{RMS}	$f_{01} = f_{02} = 100\text{ MHz}$
Jitter, Phase (Common Clock Architecture)	T_J	—	17	86	ps _{PP}	PCIe Gen 1.1, (Note 8) $T_J = D_J + 14.069 \times R_J$ (BER 10^{-12})
	$J_{RMS-CCHF}$	—	1.46	3.1	ps _{RMS}	PCIe Gen 2.1, 1.5 MHz to Nyquist, (Note 8)
	$J_{RMS-CCLF}$	—	0.08	3.0	ps _{RMS}	PCIe Gen 2.1, 10 kHz to 1.5 MHz, (Note 8)
	J_{RMS-CC}	—	0.313	1.0	ps _{RMS}	PCIe Gen 3.0, (Note 8)
	J_{RMS-CC}	—	0.313	0.5	ps _{RMS}	PCIe Gen 4.0, 16 GHz, (Note 8)
Integrated Phase Noise (Data Clock Architecture)	$J_{RMS-DCHF}$	—	2.15	4.0	ps _{RMS}	PCIe Gen 2.1, 1.5 MHz to Nyquist, (Note 8)
	$J_{RMS-DCLF}$	—	0.06	7.5	ps _{RMS}	PCIe Gen 2.1, 10 kHz to 1.5 MHz, (Note 8)
	J_{RMS-DC}	—	0.32	1.0	ps _{RMS}	PCIe Gen 3.0, (Note 8)
LVDS Output						
Offset Voltage	V_{OS}	1.125	1.25	1.40	V	$V_{DD} = 2.5\text{V}/3.3\text{V}$
V_{OS} Magnitude Change	ΔV_{OS}	—	—	50	mV	—
Output High Voltage	V_{OH}	$0.9 \times V_{DD}$	—	—	V	—
Output Low Voltage	V_{OL}	—	—	$0.1 \times V_{DD}$	V	—
Output Frequency	f_{OUT}	—	100	—	MHz	—
Differential Output Voltage	V_{OD}	275	350	475	mV _{PP}	—
V_{OD} Magnitude Change	ΔV_{OD}	—	—	40	mV	—
LVDS Output Rise/Fall Time	t_r/t_f	—	200	—	ps	20% – 80%
Output Duty Cycle	ODC	48	50	52	%	20% – 80%, $R_L = 50\Omega$, $C_L = 2\text{ pF}$
Period Jitter, Peak to Peak	J_{PTP}	—	2.5	—	ps	$f_{OUT} = 100\text{ MHz}$, Standard Drive
Integrated Phase Noise	J_{PH}	—	0.28	—	ps _{RMS}	200 kHz to 20 MHz @ 100 MHz, $T_A = +105^\circ\text{C}$
		—	0.4	—		100 kHz to 80 MHz @ 100 MHz
		—	1.7	2.0		12 kHz to 10 MHz @ 100 MHz

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise specified, $T = +25^\circ\text{C}$, $V_{\text{DD}} = 3.3\text{V}$.						
Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
LVCMOS Output						
Output High Voltage	V_{OH}	$0.8 \times V_{\text{DD}}$	—	—	V	± 10 mA drive current
Output Low Voltage	V_{OL}	—	—	$0.2 \times V_{\text{DD}}$	V	± 10 mA drive current
Output Frequency	f_{OUT}	—	100	—	MHz	—
Output Rise/Fall Time	t_r/t_f	—	1.2	—	ns	$20\% - 80\%$, $C_L = 15 \text{ pF}$
Output Duty Cycle	ODC	48	50	52	%	$f_{\text{OUT}} = 100 \text{ MHz}$, Standard Drive
Period Jitter	J_{PTP}	—	3	—	ps_{RMS}	$f_{\text{OUT}} = 100 \text{ MHz}$, Standard Drive
Integrated Phase Noise	J_{PH}	—	0.3	—	ps_{RMS}	200 kHz to 20 MHz @ 100 MHz
		—	0.38	—		100 kHz to 20 MHz @ 100 MHz
		—	1.7	2.0		12 kHz to 20 MHz @ 100 MHz

Note 1: Each pin V_{DD} should be filtered with a $0.1 \mu\text{F}$ capacitor.

2: t_{SU} is time to 100 ppm of output frequency after V_{DD} is applied and outputs are enabled.

3: Output Waveform and Test Circuit figures define the parameters.

4: Output is enabled if pad is floated or not connected.

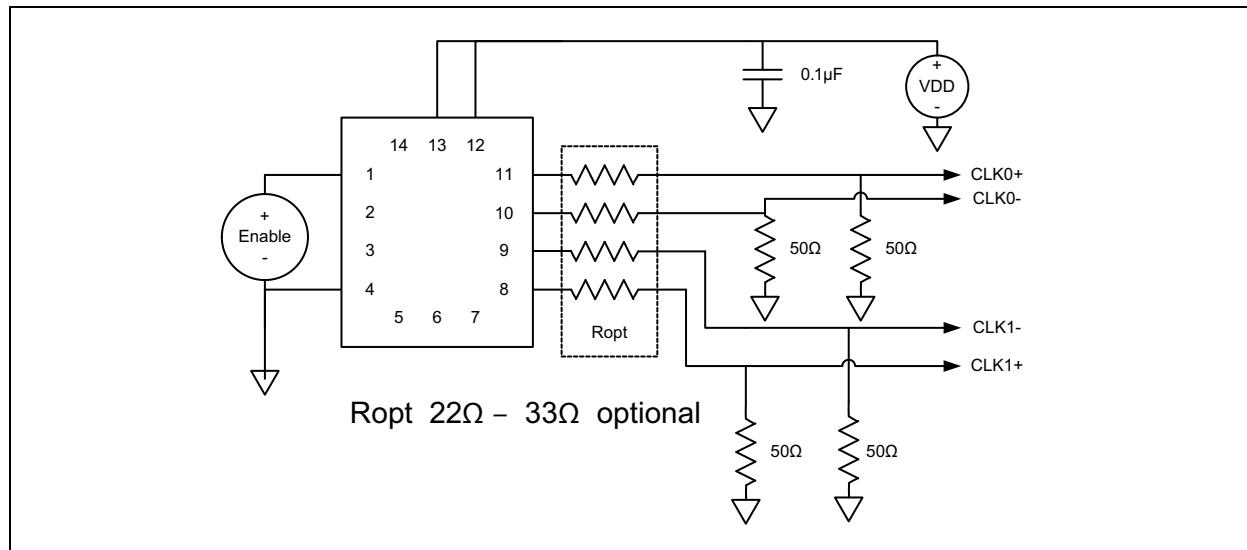
5: Contact Microchip for alternate output options (LVDS, LVCMOS).

6: Output Waveform and Connection Diagram define the parameters.

7: Period Jitter includes crosstalk from adjacent output.

8: Jitter limits established by Gen 1.1, Gen 2.1, Gen 3.0, and Gen 4.0 PCIe standards.

TEMPERATURE SPECIFICATIONS


Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
Temperature Ranges						
Operating Temperature Range	T_A	-20	—	+70	°C	Ordering Option E
		-40	—	+85	°C	Ordering Option I
		-40	—	+105	°C	Ordering Option L
Junction Operating Temperature	T_J	—	—	+150	°C	—
Storage Temperature Range	T_S	-55	—	+150	°C	—
Lead Temperature	—	—	+260	—	°C	Soldering, 40s

2.0 PIN DESCRIPTIONS AND CONNECTION DIAGRAMS

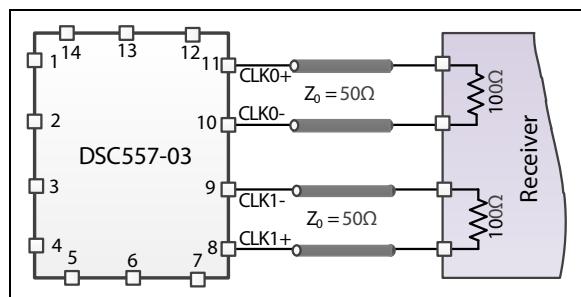

The descriptions of the pins are listed in [Table 2-1](#), [Table 2-2](#), and [Table 2-3](#).

TABLE 2-1: DSC557-03 VQFN-14 PIN FUNCTION TABLE

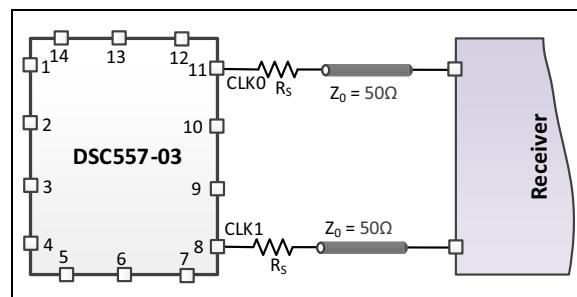
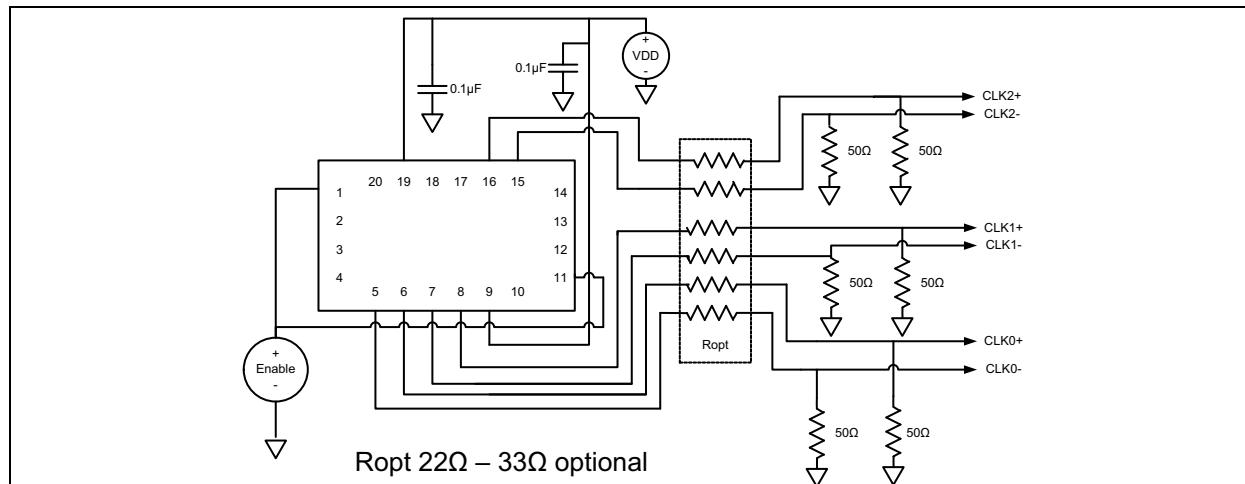

Pin Number	Pin Name	Pin Type	Description
1	OE	I	Output enable, active-high.
2	NC	N/A	Ground recommended or leave as a NC.
3	NC	N/A	Ground recommended or leave as a NC.
4	VSS	P	Ground.
5	NC	N/A	Ground recommended or leave as a NC.
6	NC	N/A	Ground recommended or leave as a NC.
7	NC	N/A	Ground recommended or leave as a NC.
8	CLK1+	O	True output of differential pair.
9	CLK1-	O	Complement output of differential pair.
10	CLK0-	O	Complement output of differential pair.
11	CLK0+	O	True output of differential pair.
12	VDD1	P	Power supply for core and output 1 (CLK1+/CLK1-)
13	VDD0	P	Power supply for output 0 (CLK0+/CLK0-)
14	NC	N/A	Ground recommended or leave as a NC.

FIGURE 2-1: 14-Lead VQFN Connection Diagram with Two HCSL Outputs.


FIGURE 2-2: LVDS Outputs.

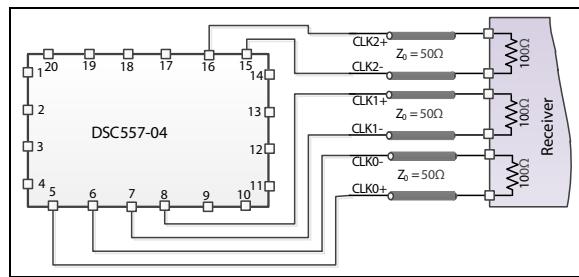

FIGURE 2-3: LVC MOS Outputs.

TABLE 2-2: DSC557-04 VQFN-20 PIN FUNCTION TABLE

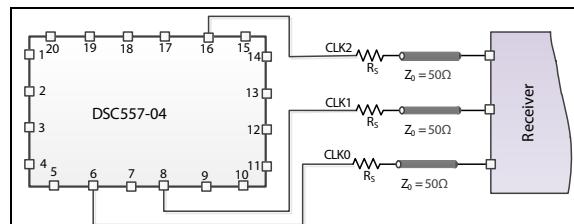

Pin Number	Pin Name	Pin Type	Description
1	OE1	I	Output enable, active-high. Controls CLK0.
2	NC	N/A	Leave unconnected or grounded.
3	VSS	P	Ground.
4	VSS	P	Ground.
5	CLK0-	O	Complement output of differential pair.
6	CLK0+	O	True output of differential pair.
7	CLK1-	O	Complement output of differential pair.
8	CLK1+	O	True output of differential pair.
9	VDD	P	Power supply.
10	NC	N/A	Leave unconnected or grounded.
11	OE2	I	Output enable, active-high. Controls CLK1 and CLK2.
12	NC	N/A	Leave unconnected or grounded.
13	VSS	P	Ground.
14	VSS	P	Ground.
15	CLK2-	O	Complement output of differential pair.
16	CLK2+	O	True output of differential pair.
17	NC	N/A	Leave unconnected or grounded.
18	NC	N/A	Leave unconnected or grounded.
19	VDD	P	Power supply.
20	NC	N/A	Leave unconnected or grounded.

FIGURE 2-4: 20-Lead VQFN Connection Diagram with Three HCSL Outputs.

FIGURE 2-5: LVDS Outputs.

FIGURE 2-6: LVCMOS Outputs.

DSC557-03/04/05

TABLE 2-3: DSC557-05 VQFN-20 PIN FUNCTION TABLE

Pin Number	Pin Name	Pin Type	Description
1	OE1	I	Output enable, active-high. Controls CLK0 and CLK3.
2	NC	N/A	Leave unconnected or grounded.
3	VSS	P	Ground.
4	VSS	P	Ground.
5	CLK0-	O	Complement output of differential pair.
6	CLK0+	O	True output of differential pair.
7	CLK1-	O	Complement output of differential pair.
8	CLK1+	O	True output of differential pair.
9	VDD	P	Power supply.
10	NC	N/A	Leave unconnected or grounded.
11	OE2	I	Output enable, active-high. Controls CLK1 and CLK2.
12	NC	N/A	Leave unconnected or grounded.
13	VSS	P	Ground.
14	VSS	P	Ground.
15	CLK2-	O	Complement output of differential pair.
16	CLK2+	O	True output of differential pair.
17	CLK3-	O	Complement output of differential pair.
18	CLK3+	O	True output of differential pair.
19	VDD	P	Power supply.
20	NC	N/A	Leave unconnected or grounded.

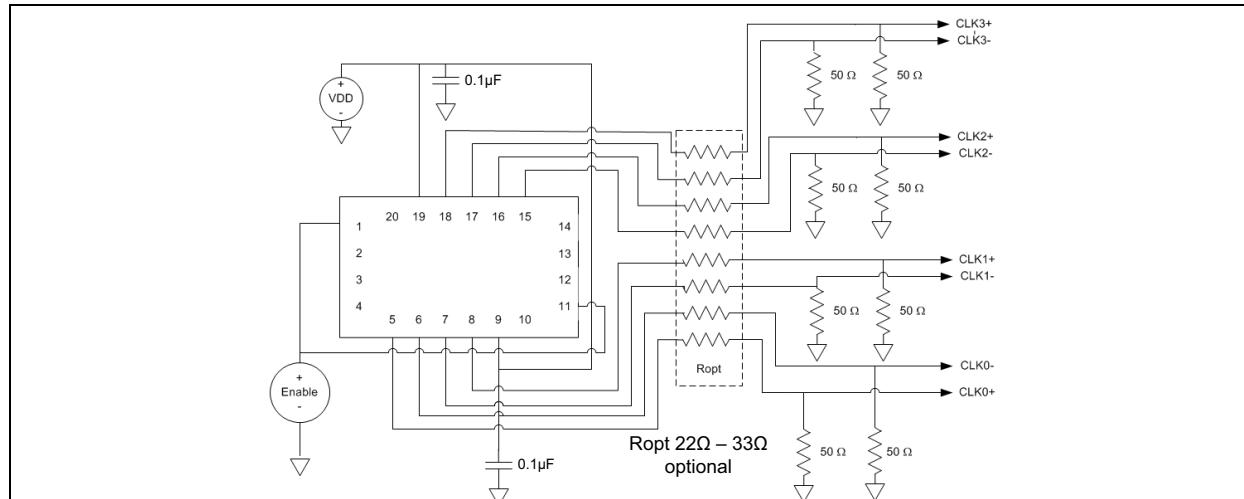


FIGURE 2-7: 20-Lead VQFN Connection Diagram with Four HCSL Outputs.

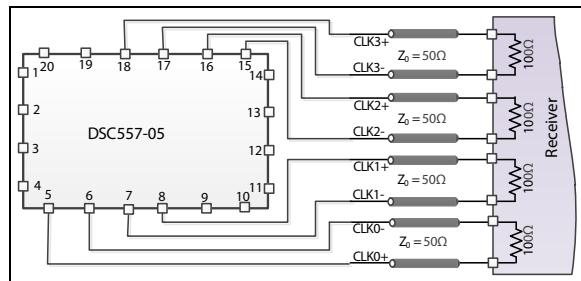


FIGURE 2-8: LVDS Outputs.

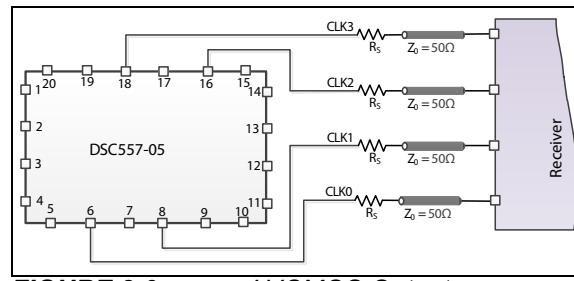
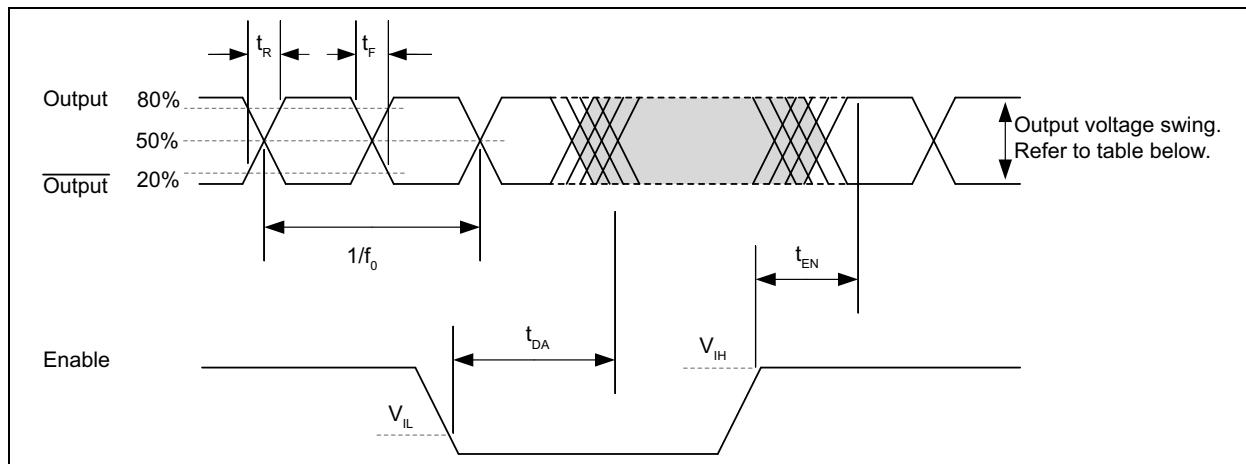



FIGURE 2-9: LVCMS Outputs.

3.0 OUTPUT WAVEFORM

FIGURE 3-1: DSC557-03/04/05 Output Waveform.

TABLE 3-1: OUTPUT VOLTAGE SWING

Specification	V_{CM}	V_{SWING_SE} (typ.)
LVDS	1.2V	350 mV
HCSL	350 mV	675 mV

4.0 SOLDER REFLOW PROFILE

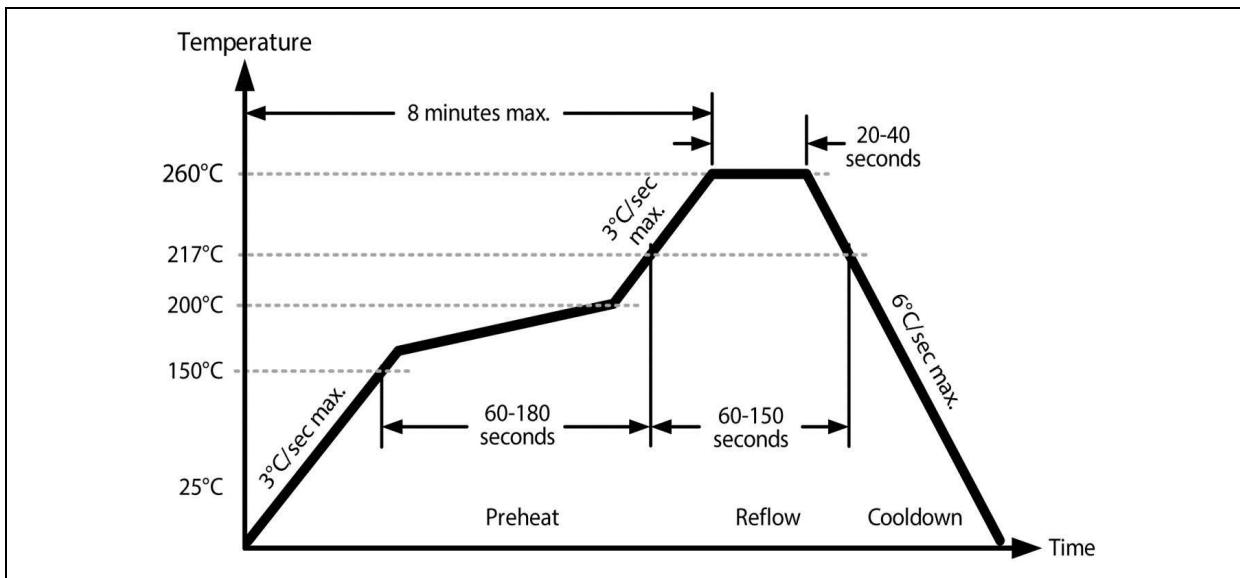
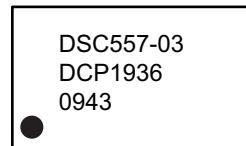


FIGURE 4-1: Solder Reflow Profile.

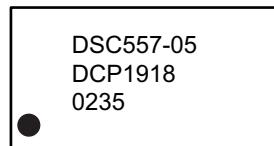
TABLE 4-1: SOLDER REFLOW

VQFN-14/VQFN-20 MSL 1 @ 260°C Refer to JSTD-020C	
Ramp-Up Rate (200°C to Peak Temp.)	3°C/sec. max.
Preheat Time 150°C to 200°C	60 to 180 sec.
Time Maintained above 217°C	60 to 150 sec.
Peak Temperature	255°C to 260°C
Time within 5°C of Actual Peak	20 to 40 sec.
Ramp-Down Rate	6°C/sec. max.
Time 25°C to Peak Temperature	8 minutes max.


5.0 PACKAGING INFORMATION

5.1 Package Marking Information

14-Lead VQFN*


Example

20-Lead VQFN*

Example

Legend: XX...X Product code

Y Year code (last digit of calendar year)

YY Year code (last 2 digits of calendar year)

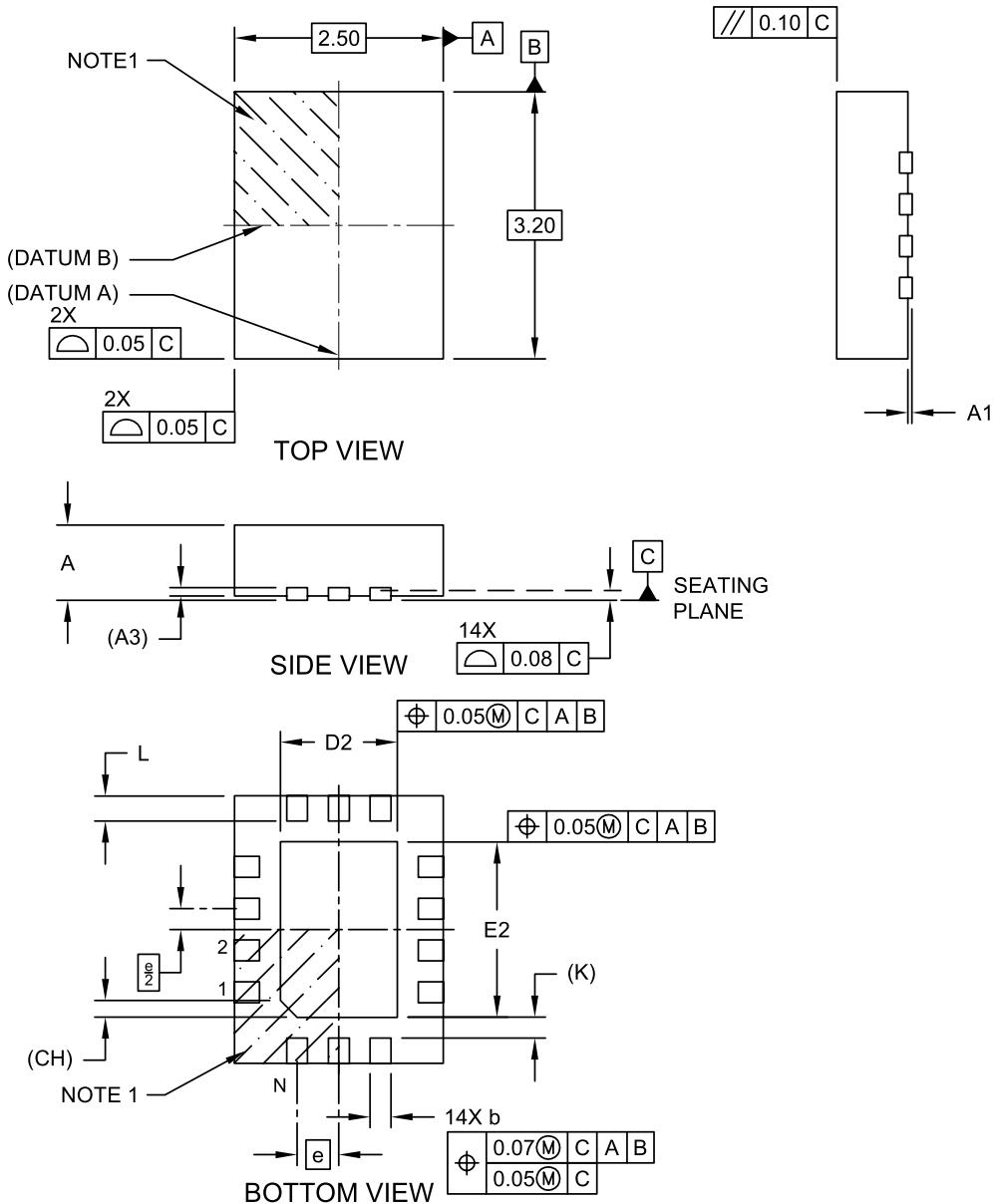
WW Week code (week of January 1 is week '01')

SSS Alphanumeric traceability code

(e3) Pb-free JEDEC® designator for Matte Tin (Sn)

* This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

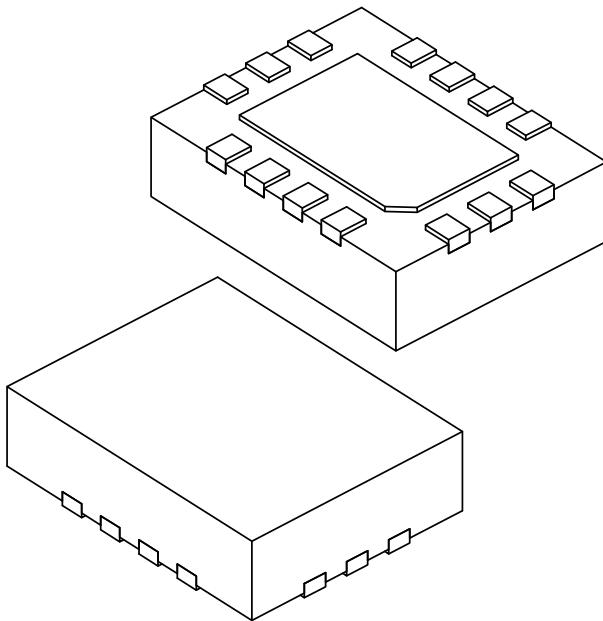
•, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).


Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (_) and/or Overbar (˜) symbol may not be to scale.

14-Lead VQFN 2.5 mm x 3.2 mm Package Outline and Recommended Land Pattern

14-Lead Very Thin Plastic Quad Flat, No Lead Package (MUA) - 2.5x3.2x0.9 mm Body [VQFN] With 1.4x2.1 mm Exposed Pad; Micrel Legacy Package


Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

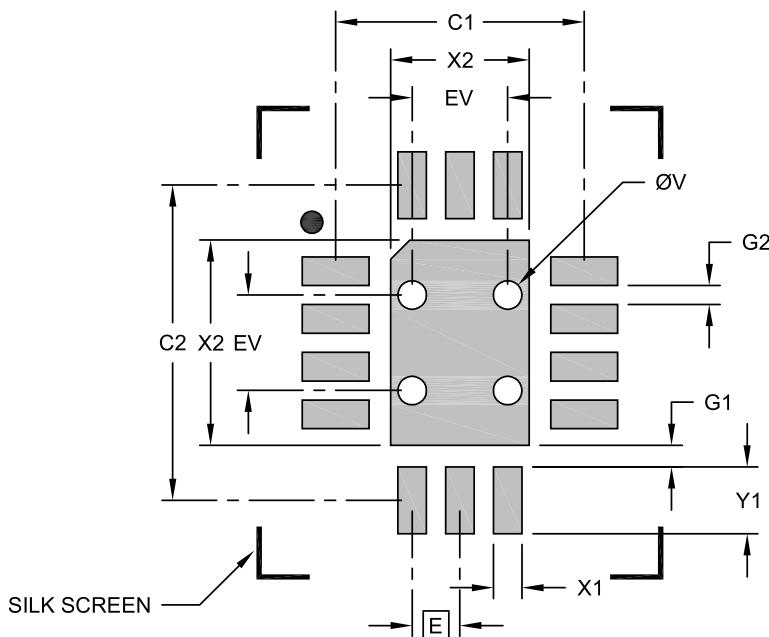
Microchip Technology Drawing C04-1098 Rev A Sheet 1 of 2

14-Lead Very Thin Plastic Quad Flat, No Lead Package (MUA) - 2.5x3.2x0.9 mm Body [VQFN] With 1.4x2.1 mm Exposed Pad; Micrel Legacy Package

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Dimension Limits	Units	MILLIMETERS		
		MIN	NOM	MAX
Number of Terminals	N		14	
Pitch	e		0.50 BSC	
Overall Height	A	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3		0.10 REF	
Overall Length	D		2.50 BSC	
Exposed Pad Length	D2	1.35	1.40	1.45
Overall Width	E		3.20 BSC	
Exposed Pad Width	E2	2.05	2.10	2.15
Exposed Pad Index Chamfer	CH		0.20 REF	
Terminal Width	b	0.20	0.25	0.30
Terminal Length	L	0.25	0.30	0.35
Terminal-to-Exposed-Pad	K		0.25 REF	

Notes:


1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

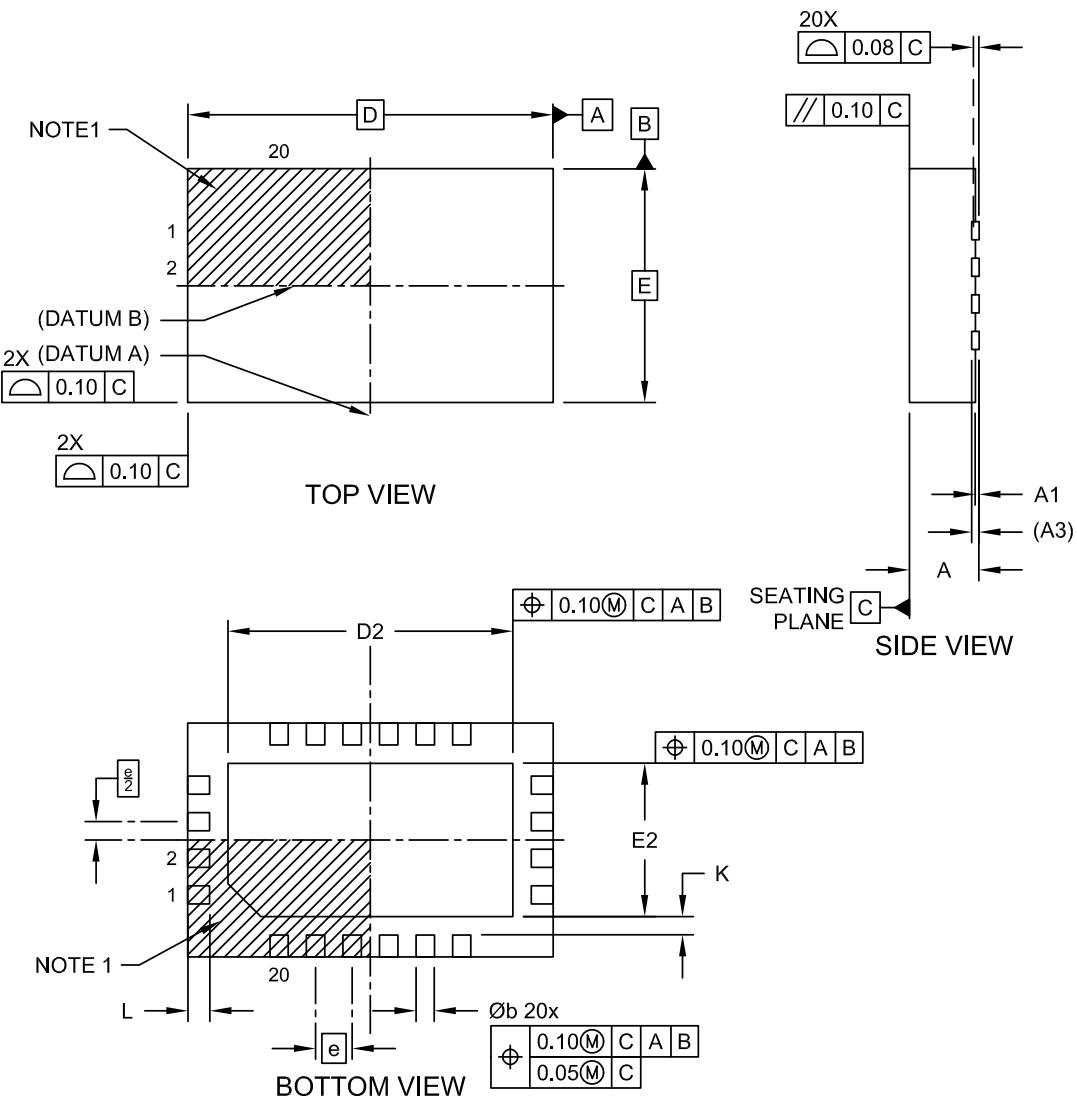
14-Lead Very Thin Plastic Quad Flat, No Lead Package (MUA) - 2.5x3.2x0.9 mm Body [VQFN] With 1.4x2.1 mm Exposed Pad; Micrel Legacy Package

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

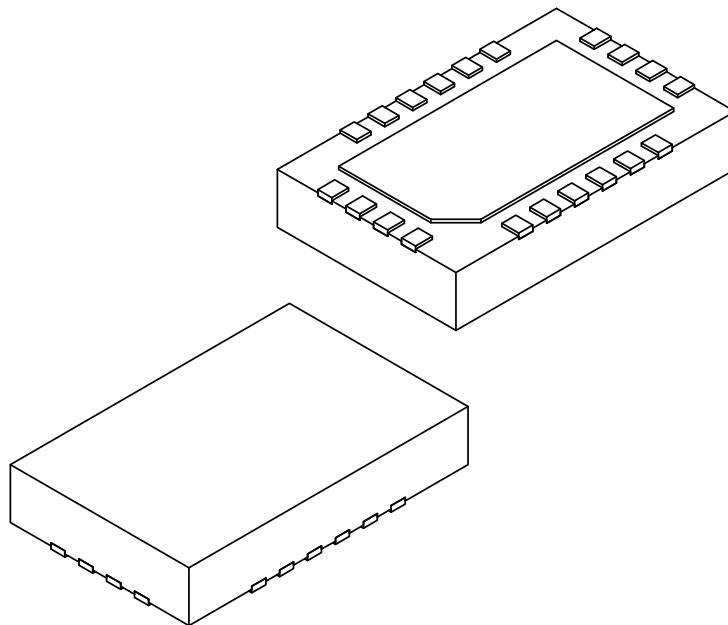
Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.50	BSC
Center Pad Width	X2			1.45
Center Pad Length	Y2			2.15
Contact Pad Spacing	C1		2.60	
Contact Pad Spacing	C2		3.30	
Contact Pad Width (Xnn)	X1		0.30	
Contact Pad Length (Xnn)	Y1		0.70	
Contact Pad to Center Pad (Xnn)	G1	0.23		
Contact Pad to Contact Pad (Xnn)	G2	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:


- Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3098 Rev A

20-Lead VQFN 5.0 mm x 3.2 mm Package Outline and Recommended Land Pattern


20-Lead Very Thin Plastic Quad Flat, No Lead Package (P9A) - 5.0x3.2x0.9 mm Body [VQFN] With 3.9x2.1 Exposed Pad

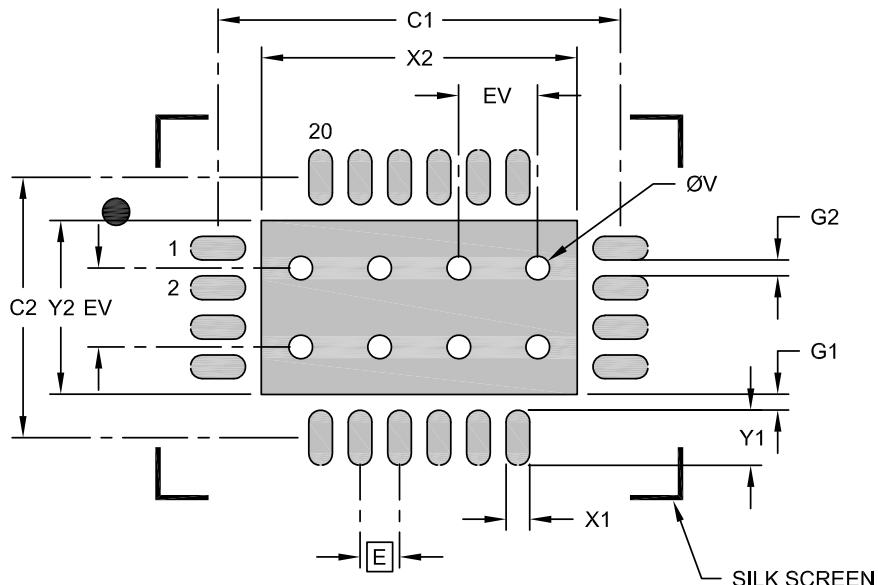
Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

20-Lead Very Thin Plastic Quad Flat, No Lead Package (P9A) - 5.0x3.2x0.9 mm Body [VQFN] With 3.9x2.1 Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Dimension Limits	Units	MILLIMETERS		
		MIN	NOM	MAX
Number of Terminals	N	20		
Pitch	e	0.50	0.50 BSC	
Overall Height	A	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.203	0.203 REF	
Overall Length	D	5.00	5.00 BSC	
Exposed Pad Length	D2	3.80	3.90	4.00
Overall Width	E	3.20	3.20 BSC	
Exposed Pad Width	E2	2.00	2.10	2.20
Terminal Width	b	0.20	0.25	0.30
Terminal Length	L	0.20	0.30	0.40
Terminal-to-Exposed-Pad	K	0.25	0.25 REF	

Notes:


1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

**20-Lead Very Thin Plastic Quad Flat, No Lead Package (P9A) - 5.0x3.2x0.9 mm Body
[VQFN] With 3.9x2.1 Exposed Pad**

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

Dimension Limits	Units	MILLIMETERS		
		MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	X2			4.00
Optional Center Pad Length	Y2			2.20
Contact Pad Spacing	C1		5.10	
Contact Pad Spacing	C2		3.30	
Contact Pad Width (X20)	X1		0.30	
Contact Pad Length (X20)	Y1		0.70	
Contact Pad to Center Pad (X20)	G1	0.20		
Contact Pad to Contact Pad (X16)	G2	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3117 Rev A

DSC557-03/04/05

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (June 2022)

- Initial release of DSC557-03/04/05 as Microchip data sheet DS20006691A. This data sheet combines DSC557-03, DSC557-04, and DSC557-05 into a single data sheet.

DSC557-03/04/05

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART No.	XXXX	X	X	X	X	Examples:
Device	Output Format	Package	Temp. Range	Stability	Packing Option	
Device:						a) DSC557-0344FL0: Two HCSL Outputs PCIe Clock Generator, 14-Lead VQFN, -40°C to +105°C Temperature Range, ±100 ppm Stability, 110/Tube
						b) DSC557-04111KI1T: Three LVCMOS Outputs PCIe Clock Generator, 20-Lead VQFN, -40°C to +85°C Temperature Range, ±50 ppm Stability, 1000/Reel
Output Format: (Note 1)						c) DSC557-053344KE0: Four Output PCIe Clock Generator, (CLK3/CLK2: LVDS, CLK1/CLK0: HCSL), 20-Lead VQFN, -20°C to +70°C Temperature Range, ±100 ppm Stability, 96/Tube
Package:						
Temperature Range:						
Stability:						
Packing Option:						
Note 1: The Output Format's arrangement is CLK3 to CLK0 (left-to-right) and may only have as many digits as that particular part allows. For example, DSC557-03 has two outputs; the part number example can only have two digits in that location. DSC557-04 can only have three and DSC557-05 can only have four.						Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

DSC557-03/04/05

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at <https://www.microchip.com/en-us/support/design-help/client-support-services>.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BestTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2022, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-0614-7

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
<http://www.microchip.com/support>
Web Address:
www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX

Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Novi, MI
Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983

Indianapolis

Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles

Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC

Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto

Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820